2020阿v天堂网手机版-2020国产成人精品视频人-2020国产成人久久精品-2020国产精品-2020国产精品久久久久-2020国产精品视频

返回首頁

拉格朗日插值法(拉格朗日插值法的應用)

來源:www.2axaiv.cn???時間:2022-12-29 00:09???點擊:71??編輯:admin 手機版

1. 拉格朗日插值法的應用

在數值分析中,拉格朗日插值法是以法國十八世紀數學家約瑟夫·拉格朗日命名的一種多項式插值方法。

許多實際問題中都用函數來表示某種內在聯系或規律,而不少函數都只能通過實驗和觀測來了解。如對實踐中的某個物理量進行觀測,在若干個不同的地方得到相應的觀測值,拉格朗日插值法可以找到一個多項式,其恰好在各個觀測的點取到觀測到的值。

2. 拉格朗日插值法實驗原理

拉格朗日插值公式

約瑟夫·拉格朗日發現的公式

拉格朗日插值公式線性插值也叫兩點插值,已知函數y = f (x)在給定互異點x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構造一個一次多項式P1(x) = ax + b使它滿足條件P1 (x0) = y0 P1 (x1) = y1其幾何解釋就是一條直線,通過已知點A (x0, y0),B(x1, y1)。

3. 拉格朗日插值法應用在哪些方面

一、拉格朗日插值法

是以法國十八世紀數學家約瑟夫·路易斯·拉格朗日命名的一種多項式插值方法。許多實際問題中都用函數來表示某種內在聯系或規律,而不少函數都只能通過實驗和觀測來了解。如對實踐中的某個物理量進行觀測,在若干個不同的地方得到相應的觀測值,拉格朗日插值法可以找到一個多項式,其恰好在各個觀測的點取到觀測到的值。這樣的多項式稱為拉格朗日(插值)多項式。

二、Lagrange基本公式:

拉格朗日插值公式,設,y=f(x),且xi< x < xi+1,i=0,1,…,n-1,有:

Lagrange插值公式計算時,其x取值可以不等間隔。由于y=f(x)所描述的曲線通過所有取值點,因此,對有噪聲的數據,此方法不可取。

一般來說,對于次數較高的插值多項式,在插值區間的中間,插值多項式能較好地逼近函數y=f(x),但在遠離中間部分時,插值多項式與y=f(x)的差異就比較大,越靠近端點,其逼近效果就越差。

三、C++實現

#include <iostream>

#include <conio.h>

#include <malloc.h>

double lagrange(double *x,double *y,double xx,int n)/*拉格朗日插值算法*/

{

int i,j;

double *a,yy=0.0;/*a作為臨時變量,記錄拉格朗日插值多項式*/

a=(double *)malloc(n*sizeof(double));

for(i=0;i<=n-1;i++)

{

a[i]=y[i];

for(j=0;j<=n-1;j++)

if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]);

yy+=a[i];

}

free(a);

return yy;

}

/

int main()

{

int i;

int n;

double x[20],y[20],xx,yy;

printf("Input n:");

scanf("%d",&n);

if(n>=20)

{

printf("Error!The value of n must in (0,20).");

getch();

return 1;

}

if(n<=0)

{

printf("Error! The value of n must in (0,20).");

getch();

return 1;

}

for(i=0;i<=n-1;i++)

{

printf("x[%d]:",i);

scanf("%lf",&x[i]);

}

printf("\n");

for(i=0;i<=n-1;i++)

{

printf("y[%d]:",i);

scanf("%lf",&y[i]);

}

printf("\n");

printf("Input?xx:");

scanf("%lf",&xx);

yy=lagrange(x,y,xx,n);

printf("x=%.13f,y=%.13f\n",xx,yy);

getch();

}

4. 拉格朗日插值方法

拉格朗日插值法與牛頓插值法都是二種常用的簡便的插值法。但牛頓法插值法則更為簡便,與拉格朗日插值多項式相比較,它不僅克服了“增加一個節點時整個計算工作必須重新開始”的缺點,而且可以節省乘、除法運算次數。

同時,在牛頓插值多項式中用到的差分與差商等概念,又與數值計算的其他方面有著密切的關系。所以!!

從運算的角度來說牛頓插值法精確度高從數學理論上來說的話,我傾向于拉格朗日大神!!

話說拉格朗日當初不搞天文,不搞物理,專弄數學,估計是數學歷史上最偉大的數學家了,沒有之一。

5. 拉格朗日插值法基本原理

拉格朗日乘數原理(即拉格朗日乘數法)由用來解決有約束極值的一種方法。

有約束極值:舉例說明,函數 z=x^2+y^2 的極小值在x=y=0處取得,且其值為零。如果加上約束條件 x+y-1=0,那么在要求z的極小值的問題就叫做有約束極值問題。

上述問題可以通過消元來解決,例如消去x,則變成

z=(y-1)^2+y^2

則容易求解。

但如果約束條件是(x+1)^2+(y-1)^2-5=0,此時消元將會很繁,則須用拉格朗日乘數法,過程如下:

f=x^2+y^2+k*((y-1)^2+y^2)

f對x的偏導=0

f對y的偏導=0

f對k的偏導=0

解上述三個方程,即可得到可讓z取到極小值的x,y值。

拉格朗日乘數原理在工程中有廣泛的應用,以上只簡單地舉一例,更復雜的情況(多元函數,多限制條件)可參閱高等數學教材。

6. 利用拉格朗日插值法

構造函數4a+b+m(a^2+b^2+c^2-3)

對函數求偏導并令其等于0

4+2ma=0

1+2mb=0

2mc=0

同時a^2+b^2+c^2=3

所以

m=根號17/2根號3

a=-4根號3/根號17

b=-根號3/根號17

4a+b=-根號51

1、是求極值的,不是求最值的

2、如果要求最值,要把極值點的函數值和不可導點的函數值還有端點函數值進行比較

3、書上說是可能的極值點,這個沒錯,比如f(x)=x^3,在x=0點導數確實為0,但是不是極值點,所以是可能的極值點,到底是不是要帶入原函數再看

7. 拉格朗日插值法的應用概述

羅爾中值定理能推出拉格朗日中值定理和柯西中值定理,反過來拉格朗日中值定理和柯西中值定理也可以推出羅爾中值定理。

泰勒中值定理是由柯西中值定理推出來的。泰勒中值定理在一階導數情形就是拉格朗日中值定理。

羅比達法則是柯西中值定理在求極限時應用。

頂一下
(0)
0%
踩一下
(0)
0%
最新圖文
主站蜘蛛池模板: 色综合久久久久久 | 伊人网在线视频观看 | 一二三四社区在线高清3 | 欧美一区在线播放 | 亚洲综合色婷婷六月丁香 | 日本高清二区 | 四虎永久免费在线观看 | 亚洲综合激情网 | 色综合久久网 | 午夜日 | 日朝欧美亚洲精品 | 使劲儿操 | 性导航app精品视频 性荡视频在线播放视频 | 一级人做人爰a全过程免费视频 | 亚洲人成网站999久久久综合 | 天天爽视频 | 欧美一级黄色录像片 | 亚洲伊人久久大香线蕉综合图片 | 天堂网www在线观看 天堂网www在线 | 亚洲视频欧洲视频 | 中国国产一级毛片视频 | 亚洲永久精品网站 | 日本五级床片全部免费放 | 五月婷婷六月丁香综合 | 欧美性xxxx | 香蕉啪| 五月天丁香在线 | 欧美一级在线观看视频 | 中文字幕在线精品不卡 | 亚洲成a人片在线观看中文!!! | 亚洲性久久久影院 | 四虎影院2022| 日韩性大片免费 | 视频二区日韩 | 天堂新版8中文在线8 | 亚洲精品国产福利在线观看 | 亚洲婷婷六月 | 四虎剧院| 手机看片福利盒子久久青 | 日本黄色免费网址 | 青青草视频免费观看 |