1. 拉格朗日墓場結(jié)局
[拉格朗日(Lagrange)中值定理]若函數(shù)f(x)滿足條件:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開區(qū)間(a,b)內(nèi)可導(dǎo),則在(a,b)內(nèi)至少存在一點(diǎn)ξ,使得
顯然,羅爾定理是拉格朗日中值定理當(dāng)f(a)=f(b)時(shí)的特殊情形,拉格朗日中值定理是羅爾定理的推廣。
2. 《拉格朗日墓場》
一.線性插值(一次插值) 已知函數(shù)f(x)在區(qū)間[xk ,xk+1 ]的端點(diǎn)上的函數(shù)值yk =f(xk ), yk+1 = f(xk+1 ),求一個(gè)一次函數(shù)y=P1 (x)使得yk =f(xk ),yk+1 =f(xk+1 ), 其幾何意義是已知平面上兩點(diǎn)(xk ,yk ),(xk+1 ,yk+1 ),求一條直線過該已知兩點(diǎn)。
首先,插值法是:利用函數(shù)f (x)在某區(qū)間中插入若干點(diǎn)的函數(shù)值,作出適當(dāng)?shù)奶囟ê瘮?shù),在這些點(diǎn)上取已知值,在區(qū)間的其他點(diǎn)上用這特定函數(shù)的值作為函數(shù)f (x)的近似值,這種方法稱為插值法.
其目的便就是估算出其他點(diǎn)上的函數(shù)值.
而拉格朗日插值法就是一種插值法.
3. 拉格朗日墓場書評
羅爾中值定理能推出拉格朗日中值定理和柯西中值定理,反過來拉格朗日中值定理和柯西中值定理也可以推出羅爾中值定理。
泰勒中值定理是由柯西中值定理推出來的。泰勒中值定理在一階導(dǎo)數(shù)情形就是拉格朗日中值定理。
羅比達(dá)法則是柯西中值定理在求極限時(shí)應(yīng)用。
4. 拉格朗日墳場
關(guān)于代數(shù)方程的求解,從16世紀(jì)前半葉起,已成為代數(shù)學(xué)的首要問題,一般的三次和四次方程解法被意大利的幾位數(shù)學(xué)家解決.在以后的幾百年里,代數(shù)學(xué)家們主要致力于求解五次乃至更高次數(shù)的方程,但是一直沒有成功.對于方程論,拉格朗日比較系統(tǒng)地研究了方程根的性質(zhì)(1770),正確指出方程根的排列與置換理論是解代數(shù)方程的關(guān)鍵所在,從而實(shí)現(xiàn)了代數(shù)思維方式的轉(zhuǎn)變.盡管拉格朗日沒能徹底解決高次方程的求解問題,但是他的思維方法卻給后人以啟示
5. 拉格朗日墓場 小說
拉格朗日出生在意大利的都靈。由于是長子,父親一心想讓他學(xué)習(xí)法律,然而,拉格朗日對法律毫無興趣,偏偏喜愛上文學(xué)。
直到16歲時(shí),拉格朗日仍十分偏愛文學(xué),對數(shù)學(xué)尚未產(chǎn)生興趣。16歲那年,他偶然讀到一篇介紹牛頓微積分的文章《論分析方法的優(yōu)點(diǎn)》,使他對牛頓產(chǎn)生了無限崇拜和敬仰之情,于是,他下決心要成為牛頓式的數(shù)學(xué)家。
在進(jìn)入都靈皇家炮兵學(xué)院學(xué)習(xí)后,拉格朗日開始有計(jì)劃地自學(xué)數(shù)學(xué)。由于勤奮刻苦,他的進(jìn)步很快,尚未畢業(yè)就擔(dān)任了該校的數(shù)學(xué)教學(xué)工作。20歲時(shí)就被正式聘任為該校的數(shù)學(xué)副教授。從這一年起,拉格朗日開始研究“極大和極小”的問題。他采用的是純分析的方法。1758年8月,他把自己的研究方法寫信告訴了歐拉,歐拉對此給予了極高的評價(jià)。從此,兩位大師開始頻繁通信,就在這一來一往中,誕生了數(shù)學(xué)的一個(gè)新的分支——變分法。
1759年,在歐拉的推薦下,拉格朗日被提名為柏林科學(xué)院的通訊院士。接著,他又當(dāng)選為該院的外國院士。
1762年,法國科學(xué)院懸賞征解有關(guān)月球何以自轉(zhuǎn),以及自轉(zhuǎn)時(shí)總是以同一面對著地球的難題。拉格朗日寫出一篇出色的論文,成功地解決了這一問題,并獲得了科學(xué)院的大獎(jiǎng)。拉格朗日的名字因此傳遍了整個(gè)歐洲,引起世人的矚目。兩年之后,法國科學(xué)院又提出了木星的4個(gè)衛(wèi)星和太陽之間的攝動(dòng)問題的所謂“六體問題”。面對這一難題,拉格朗日毫不畏懼,經(jīng)過數(shù)個(gè)不眠之夜,他終于用近似解法找到了答案,從而再度獲獎(jiǎng)。這次獲獎(jiǎng),使他贏得了世界性的聲譽(yù)。
1766年,拉格朗日接替歐拉擔(dān)任柏林科學(xué)院物理數(shù)學(xué)所所長。在擔(dān)任所長的20年中,拉格朗日發(fā)表了許多論文,并多次獲得法國科學(xué)院的大獎(jiǎng):1722年,其論文《論三體問題》獲獎(jiǎng);1773年,其論文《論月球的長期方程》再次獲獎(jiǎng);1779年,拉格朗日又因論文《由行星活動(dòng)的試驗(yàn)來研究彗星的攝動(dòng)理論》而獲得雙倍獎(jiǎng)金。
在柏林科學(xué)院工作期間,拉格朗日對代數(shù)、數(shù)論、微分方程、變分法和力學(xué)等方面進(jìn)行了廣泛而深入的研究。他最有價(jià)值的貢獻(xiàn)之一是在方程論方面。他的“用代數(shù)運(yùn)算解一般n次方程(n4)是不能的”結(jié)論,可以說是伽羅華建立群論的基礎(chǔ)。