1. 帶有拉格朗日余項(xiàng)的麥克勞林公式y(tǒng)=ln(x+1)
線性插值也叫兩點(diǎn)插值,已知函數(shù)y = f (x)在給定互異點(diǎn)x0, x1上的值為y0= f (x0),y1=f (x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式:P1(x) = ax + b,使它滿足條件:P1 (x0) = y0, P1 (x1) = y1
其幾何解釋就是一條直線,通過(guò)已知點(diǎn)A (x0, y0),B(x1, y1)。
線性插值計(jì)算方便、應(yīng)用很廣,但由于它是用直線去代替曲線,因而一般要求[x0, x1]比較小,且f(x)在[x0, x1]上變化比較平穩(wěn),否則線性插值的誤差可能很大。為了克服這一缺點(diǎn),有時(shí)用簡(jiǎn)單的曲線去近似地代替復(fù)雜的曲線,最簡(jiǎn)單的曲線是二次曲線,用二次曲線去逼近復(fù)雜曲線的情形。
2. 帶有拉格朗日余項(xiàng)的麥克勞林公式例題
拉格朗日(Lagrange)余項(xiàng): ,其中θ∈(0,1)。 拉格朗日余項(xiàng)實(shí)際是泰勒公式展開(kāi)式與原式之間的一個(gè)誤差值,如果其值為無(wú)窮小,則表明公式展開(kāi)足夠準(zhǔn)確。 證明: 根據(jù)柯西中值定理: 其中θ1在x和x0之間;繼續(xù)使用柯西中值定理得到: 其中θ2在θ1和x0之間;連續(xù)使用n+1次后得到: 其中θ在x和x0之間;同時(shí): 進(jìn)而: 綜上可得:
3. ln(1+x)帶有拉格朗日余項(xiàng)的麥克勞林公式
1、sinx=x-x^3/3!+x^5/5!-…+(-1)^nx^(2n+1)/(2n+1)!+0^(x^(2n+2))
2、cosx=1-x^2/2!+x^4/4!-x^6/6!+…+(-1)^nx^2n/(2n)!+0^(x^2n)
3、ln(1+x)=x-x^2/2+x^3/3-…+(-1)^nx^(n+1)/(n+1)+0(x^(n+1))
4、1/(1-x)=1+x+x^2+…+x^n+0(x^n)
5、(1+x)^m=1+mx+m(m-1)/2!x^2+…+m(m-1)…(m-n-+1)x^n/n!+0(x^n)
6、e^x=1+x+x^2/2!+…x^n/n!+e^θx·x^(n+1)/(n+1)!
7、1/(1+x)=1+x+x^2+x^3+…+x^n(x∈(-1,1))
8、tanx=x+x^3/3+2x^5/15+17x^7/315+…+(-1)^(n-1)2^2n(2^2n-1)/(2n)!
9、secx=1+x^2/2+5x^4/24+61x^6/720+277x^8/8064+o(x^8)
10、coshx=1+x^2/2!+x^4/4!+x^6/6!+…+x^2n/(2n)!
4. 帶有拉格朗日余項(xiàng)的麥克勞林公式三階
拉格朗日插值公式
線性插值也叫兩點(diǎn)插值,已知函數(shù)y=f(x)在給定互異點(diǎn)x0,x1上的值為y0=f(x0),y1=f(x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式p1(x)=ax+b使它滿足條件p1(x0)=y0p1(x1)=y1其幾何解釋就是一條直線,通過(guò)已知點(diǎn)a(x0,y0),b(x1,y1)。線性插值計(jì)算方便、應(yīng)用很廣,但由于它是用直線去代替曲線,因而一般要求[x0,x1]比較小,且f(x)在[x0,x1]上變化比較平穩(wěn),否則線性插值的誤差可能很大。為了克服這一缺點(diǎn),有時(shí)用簡(jiǎn)單的曲線去近似地代替復(fù)雜的曲線,最簡(jiǎn)單的曲線是二次曲線,用二次曲線去逼近復(fù)雜曲線的情形。
5. 帶有拉格朗日余項(xiàng)的麥克勞林公式5個(gè)基本函數(shù)
拉格朗日余項(xiàng)的泰勒公式:f'(x)=n+1。泰勒公式是一個(gè)用函數(shù)在某點(diǎn)的信息描述其附近取值的公式。如果函數(shù)滿足一定的條件,泰勒公式可以用函數(shù)在某一點(diǎn)的各階導(dǎo)數(shù)值做系數(shù)構(gòu)建一個(gè)多項(xiàng)式來(lái)近似表達(dá)這個(gè)函數(shù)。
函數(shù)(function)的定義通常分為傳統(tǒng)定義和近代定義,函數(shù)的兩個(gè)定義本質(zhì)是相同的,只是敘述概念的出發(fā)點(diǎn)不同,傳統(tǒng)定義是從運(yùn)動(dòng)變化的觀點(diǎn)出發(fā),而近代定義是從集合、映射的觀點(diǎn)出發(fā)。函數(shù)的近代定義是給定一個(gè)數(shù)集A,假設(shè)其中的元素為x,對(duì)A中的元素x施加對(duì)應(yīng)法則f,記作f(x),得到另一數(shù)集B,假設(shè)B中的元素為y,則y與x之間的等量關(guān)系可以用y=f(x)表示,函數(shù)概念含有三個(gè)要素:定義域A、值域B和對(duì)應(yīng)法則f。其中核心是對(duì)應(yīng)法則f,它是函數(shù)關(guān)系的本質(zhì)特征。